Activation of the sensorimotor cortex at 1.0 T: comparison of echo-planar and gradient-echo imaging.

نویسندگان

  • B F van der Kallen
  • L J van Erning
  • M W van Zuijlen
  • H Merx
  • H O Thijssen
چکیده

PURPOSE The increasing demand for the clinical application of functional MR imaging raises the question of whether this technique can be routinely performed on 1.0-T MR scanners. To this end, we assessed the feasibility of functional MR imaging at 1.0 T. METHODS Healthy volunteers were scanned during the performance of a motor task. Functional data were acquired with echo-planar imaging (EPI) and with gradient-echo (GRE) and dual-echo GRE sequences. The signal intensity variations of the EPI and GRE sequences were compared, and the influence of inflow and blood oxygen level-dependent (BOLD) effects on the signal variations was assessed with the dual-echo GRE sequences. RESULTS In 11 of the 12 subjects we found activation in the primary motor cortex with both the GRE and EPI sequences. Active voxels had a significantly higher mean percentage of signal changes with the EPI sequence than with the GRE sequence (EPI: 1% to 6.1%, mean 2.4%; GRE: 1% to 4.5%, mean 1.9%). The EPI sequence was less sensitive to motion artifacts and enabled imaging of a larger brain volume in a shorter time. With a dual-echo sequence we found an increasing contribution of inflow effect with an increasing percentage of signal changes. CONCLUSION Functional MR imaging of the sensorimotor cortex can be routinely performed at 1.0 T.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task

A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo (GE) EPI multiband sequence (TR of 1.4 s) using a color-word Stroop task. PINS RF pulses were used ...

متن کامل

Mapping of the sensorimotor cortex: functional MR and magnetic source imaging.

PURPOSE To assess the reliability and comparability of functional MR imaging and magnetic source imaging for mapping the somatosensory cortex. METHODS Parallel studies were performed in eight volunteer subjects in whom both hemispheres were measured with the use of painless tactile stimulation of the tip of each index finger. Magnetic source imaging was performed using a 37-channel biomagneto...

متن کامل

Lateral geniculate nucleus: anatomic and functional identification by use of MR imaging.

BACKGROUND AND PURPOSE MR imaging has the potential capacity for noninvasively depicting the anatomy and function of thalamic nuclei. The purpose of this study was to identify the lateral geniculate nucleus (LGN), which is the thalamic relay nucleus for vision, with anatomic and functional MR imaging at 1.5 T. METHODS Three-millimeter-thick axial images were obtained from eight volunteers by ...

متن کامل

Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 Tesla.

Arterial spin labeling (ASL) perfusion contrast is not based on susceptibility effects and can therefore be used to study brain function in regions of high static inhomogeneity. As a proof of concept, single-shot spin-echo echo-planar imaging (EPI) acquisition was carried out with a multislice continuous ASL (CASL) method at 1.5T. A bilateral finger tapping paradigm was used in the presence of ...

متن کامل

Optimized activation of the primary sensorimotor cortex for clinical functional MR imaging.

BACKGROUND AND PURPOSE One application of functional MR imaging is to identify the primary sensorimotor cortex (M1 and S1) around the central sulcus before brain surgery. However, it has been shown that undesirable coactivation of nonprimary motor areas, such as the supplementary motor area and the premotor area, can interfere with the identification of the primary motor cortex, especially in p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 1998